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1 Methods

1.1 Spectral solution of the master equation

The chemical master equation (CME) is solved using the method of spectral expansion [1, 2], described in
detail in the next section. Briefly, the structure of of the CME, in which the dynamics can be separated into
two operators that act only on m or n but not both, allows for its solution to be written in the form pmn(t) =∑M
j=0

∑N
k=0Gjk(t; β̄)φjm(α)φkn(β̄), where φjm(α) is the jth eigenvector of the operator Lm(α) and similarly

for φkn(β̄), and β̄ is an expansion parameter on which pmn does not ultimately depend. The expansion
coefficients Gjk(t; β̄) can be calculated straightforwardly, as shown in the next section. Importantly, this
spectral expansion dramatically decreases the computational complexity of calculating pmn: rather than
solving the (M + 1)(N + 1) × (M + 1)(N + 1) system of the original CME, it is only necessary to solve

N linear systems of size (M + 1) × (M + 1) for the vectors of coefficients ~Gk. We emphasize that since
the system has a finite state-space, no approximations are made in using the spectral expansion, and the
solution remains exact. Furthermore, the moments of the steady-state distribution pmn can be conveniently
expressed in terms of the expansion coefficients Gjk; in particular, 〈n〉 = G01 and 〈n2〉 = 2G02 +G01.

1.2 Mutual information

The mutual information between network input and response is given by the standard expression [3] I [α,m] =
〈log{p(α, n)/[p(α)p(n)]}〉, where the average is taken over the joint distribution p(α, n) = p(n|α)p(α), and

p(n|α) =
∑M
m=0 p(m,n|α) is given by the steady state of the CME. The calculation of the mutual information

requires specification of the distribution of input signals p(α). We choose Nα values of α such that q =

α/(α + 1) = 〈m〉/M is uniformly-spaced over the range 0 ≤ q ≤ 1; then p(n) =
∑Nα
i=1 p(n|αi)p(αi) and

p(αi) = N−1
α . H̊owever, our conclusions are unaffected if we instead take a input distribution that is

unimodal or bimodal (Fig. S7). We take Nα > 30, for which I [α,m] converges to within 1% of its large-Nα
limit (Fig. S8).
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1.3 Spatial simulations

The diffusion and reactions of M X molecules and N Y molecules are simulated on a two-dimensional square
lattice of side length λ using a fixed-time-step integration scheme. During each step of duration δt, each
particle is moved to a random neighboring lattice site with probability pD = (D/`2)δt, where D is the
diffusion constant, and ` is the lattice spacing. Molecules have steric interactions on the lattice, such that
only one molecule can be present at each lattice site at any time. Attempted moves to an occupied site are
rejected, with the particle remaining at its original position. If a molecule in the X∗ state is adjacent to a
molecule in the Y state, the latter is converted to the Y ∗ state with probability pr = γ(βλ2/M)δt. To make
π partitions, linear diffusion barriers are placed at iλ/

√
π in each direction, where i ∈ {0, 1, . . . ,√π − 1}. A

diffusion step which crosses such a barrier is accepted with probability reduced by a factor phop. The time
step δt is chosen sufficiently small that no probability exceeds one.

2 Solution of the master equation by spectral expansion

This section describes the solution via the method of spectral expansion, or the ‘spectral method’, of the
CME introduced in the main text. The spectral method has been used fruitfully in the context of gene
regulation to solve CMEs describing cascades [1], bursts [2], and oscillations [4], and a pedagogical treatment
is available in [5]. Here we apply the spectral method to coupled reversible switching.

From Eqns. 1-2 of the main text, the stochastic dynamics of the system under study are given by the CME

ṗmn = − [Lm(α,M) + γLn(βm, N)] pmn, (1)

where both operators Lm and Ln have the form

Lm(α,M) = α
[
1− E−1

m

]
(M −m) +

[
1− E+1

m

]
m, (2)

with Eimf(m) = f(m+ i) defining the step operator. The CME describes the evolution of the probability of
having m X proteins in the active state and n Y proteins in the active state, with βm the coupling function
by which X drives the activation of Y.

2.1 The moments do not close

We first demonstrate that direct computation of the moments from the CME is not possible because the
moments do not close. The reason is that a nonlinearity is present in the first term of Eqn. 2 in the form of
the factor βmn. As a result, the first moment depends on a higher moment, which in turn depends on an
even higher moment, and so on.

To see explicitly that the moments do not close, we consider computing the dynamics of the first moment of
the driven species, the mean 〈n〉, by summing the CME over m and n against n. We obtain

1

γ
∂t〈n〉 = −〈n〉+N〈βm〉 − 〈βmn〉, (3)

where averages are taken over pmn. We see that indeed the final term carries the nonlinearity. Even for the
simplest coupling function, i.e. linear coupling βm = cm, one finds a hierarchy of moment dependencies that
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does not close:

∂t〈n〉 = −γ〈n〉+ γcN〈m〉 − γc〈mn〉, (4)

∂t〈mn〉 = αM〈n〉 − (α+ γ + 1)〈mn〉+ γcN〈m2〉 − γc〈m2n〉, (5)

∂t〈m2n〉 = . . . (6)

That is, the dynamics of 〈n〉 depend on 〈mn〉, whose dynamics depend on 〈m2n〉, and so on.

The fact that the moments cannot be computed—indeed, not even the mean output 〈n〉—makes it particu-
larly important to actually solve the CME in order to learn about the statistical properties of this system.

2.2 The spectrum of the switch operator

The CME is a linear equation. Even when the rates are nonlinear functions of the molecule numbers, the
CME is still linear in its degree of freedom, the joint probability. The most straightforward way to solve a
linear equation is to write its solution as an expansion in the eigenfunctions of the linear operator. Although it
is difficult to derive the eigenfunctions of the coupled operator Lm(α,M)+γLn(βm, N), it is straightforward
to derive the eigenfunctions of the uncoupled operator Lm(α,M), which we call the switch operator. Indeed,
we will see that expanding the joint probability in eigenfunctions of the uncoupled operator greatly simplifies
the form of the CME, yielding an exact solution in terms of matrix algebra.

The switch operator governs the CME for the first species X ; explicitly,

ṗm = −Lpm = α[M − (m− 1)]pm−1 + (m+ 1)pm+1 − [α(M −m) +m]pm, (7)

where for notational simplicity we have taken Lm(α,M)→ L. Its eigenvalue relation is written

Lφjm = λjφ
j
m, (8)

for eigenvalues λj and eigenvectors φjm.

2.2.1 Eigenvalues

The matrix form of the operator L can be read directly from Eqn. 7:

L =



Mα −1
−Mα (M − 1)α+ 1 −2

−(M − 1)α (M − 2)α+ 2 −3
. . .

. . .
. . .

−3α 2α+ (M − 2) −(M − 1)
−2α α+ (M − 1) −M

−α M


. (9)

The tridiagonal structure follows from the fact that molecule numbers only increase or decrease by one
at a time. Practically speaking, the eigenvalues can be obtained using the fact that the determinant of a
tridiagonal matrix can be computed recursively. Performing the computation for M = 0, 1, 2, . . . reveals the
pattern

λj = (α+ 1)j, j ∈ {0, 1, 2, . . . ,M}. (10)

However, Eqn. 10 can be derived more rigorously by making use of a generating function. We present
this derivation next, since the generating function formalism will also prove quite useful in deriving the
eigenvectors and solving the CME.
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The generating function is an expansion in any complete basis for which the probability distribution provides
the expansion coefficients [6]. Choosing as our basis the set of polynomials in some continuous variable x,
the generating function is defined

G(x) =

M∑
m=0

pmx
m. (11)

The probability distribution is recovered via the inverse transform

pm =
1

m!
∂mx [G(x)]x=0. (12)

A key utility of the generating function is turning the CME, which is a set of ordinary differential equations
(ODEs), into a single partial differential equation. Indeed, summing Eqn. 7 against xm yields

Ġ = −(x− 1)[(αx+ 1)∂x − αM ]G, (13)

where the appearances of x and ∂x arise from the shifts m−1 and m+ 1, respectively. Eqn. 13 directly gives
the form of the operator in x space: L = (x − 1)[(αx + 1)∂x − αM ]. The eigenfunctions are then obtained
from the relation Lφj(x) = λjφ

j(x) by separating variables and integrating:

φj(x) = (α+ 1)−M (x− 1)λj/(α+1)(αx+ 1)M−λj/(α+1). (14)

Here, the constant factor (α + 1)−M is determined by application of the normalization condition G(1) = 1
to the steady state solution, which is obtained by setting λj = 0:

G(x) =

(
αx+ 1

α+ 1

)M
. (15)

We will solve Eqn. 13 in two ways: by the method of characteristics and by expansion in the eigenfunctions;
together these solutions will reveal the eigenvalues.

First, the method of characteristics [7] posits that the dependence of G on x and t occurs via some parametric
variable s, i.e. G(x, t) = G[x(s), t(s)]. The chain rule then gives dG/ds = (∂G/∂x)(dx/ds)+(∂G/∂t)(dt/ds),
which when compared term by term with Eqn. 13 yields three ordinary differential equations:

dt

ds
= 1,

dx

ds
= (x− 1)(αx+ 1),

dG

ds
= αM(x− 1). (16)

The first identifies s = t, with which the second is solved by

z =
x− 1

αx+ 1
e−(α+1)t, (17)

where z is a constant of integration. The crux of the method is that Eqn. 17 defines a characteristic curve
on which G must depend, i.e. G(x, t) = f [z(x, t)]g(x, t), where f and g are unknown functions, and z has
been promoted to a characteristic function of x and t. The function g is identified by realizing that steady
state is reached as t → ∞, for which f(z) → f(0) no longer depends on x or t. Therefore, g must be the
steady state function given in Eqn. 15:

G(x, t) =

(
αx+ 1

α+ 1

)M
f(z). (18)

Although we still do not know f , we may Taylor expand it around the point z = 0, yielding

G(x, t) =

(
αx+ 1

α+ 1

)M ∞∑
j=0

cjz
j =

(
αx+ 1

α+ 1

)M ∞∑
j=0

cj

(
x− 1

αx+ 1

)j
e−(α+1)jt, (19)

where cj ≡ ∂jz [f(z)]z=0/j!.
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Second, because Eqn. 13 is linear, we may also write down its solution as an expansion in the eigenfunctions
of its linear operator:

G(x, t) =
∑
j

Cj(t)φ
j(x). (20)

Under the assumption that the eigenfunctions are orthogonal (which will be shown in the next section),
inserting Eqn. 20 into Eqn. 13 yields an independent ODE for each Cj , Ċj = −λjCj , which is solved by
Cj(t) = cje

−λjt for initial conditions cj . Inserting this functional form and that for φj(t) (Eqn. 14) into Eqn.
20 yields

G(x, t) =

(
αx+ 1

α+ 1

)M∑
j

cj

(
x− 1

αx+ 1

)λj/(α+1)

e−λjt. (21)

Comparison of Eqns. 19 and 21 reveals both the expression for the eigenvalues, λj = (α + 1)j, and a limit
on their domain, the nonnegative integers j ∈ {0, 1, 2, . . . ,∞}. Of course, the domain can be a subset of
the nonnegative integers; then some cj in Eqn. 21 would be zero. Indeed, since L is a finite matrix of size
M + 1 by M + 1 (Eqn. 9), it is spanned by M + 1 linearly independent eigenvectors, meaning we expect only
M + 1 eigenvalues. In fact, the only set of M + 1 nonnegative integers that satisfies the requirement that
the trace of L,

∑M
m=0[(M −m)α+m] = (α+ 1)M(M + 1)/2, equals the sum of the eigenvalues,

∑
j(α+ 1)j,

is j ∈ {0, 1, 2, . . . ,M}. Thus, we arrive at the result

λj = (α+ 1)j, j ∈ {0, 1, 2, . . . ,M}, (22)

as proposed by inspection in Eqn. 10.

2.2.2 State space notation

The linear algebraic manipulations we have done thus far can be cast in the more abstract notation of state
spaces, commonly used in quantum mechanics [8]. We will find this notation useful in later sections, for
example in transforming between the molecule number basis and the eigenbasis. Specifically, we introduce
a state |p〉 that can be projected into 〈m| space to give the probability distribution, or into 〈x| space to give
the generating function:

〈m|p〉 = pm, 〈x|p〉 = G(x). (23)

In the same way, the jth eigenstate |j〉 is projected into 〈m| space to give the jth eigenvector, or into 〈x|
space to give the jth eigenfunction:

〈m|j〉 = φjm, 〈x|j〉 = φj(x). (24)

This notation offers new insight into our definition of the generating function. For example, Eqn. 11 can
now be written

〈x|p〉 =

M∑
m=0

〈x|m〉〈m|p〉, (25)

where we have recognized
〈x|m〉 = xm (26)

as the projection of the state |m〉 into 〈x| space. Eqn. 25 has a clear interpretation: we have inserted a
complete set of |m〉 states. Similarly, Eqn. 12 can now be written

〈m|p〉 =

∮
d̄x

G(x)

xm+1
=

∮
d̄x〈m|x〉〈x|p〉. (27)

In the first step, we have rewritten Eqn. 12 using Cauchy’s theorem, where d̄x ≡ dx/2πi, and the contour
surrounds the pole at x = 0. In the second step, we have recognized

〈m|x〉 =
1

xm+1
(28)
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as the conjugate to 〈x|m〉. Eqn. 27 has the clear interpretation of inserting a complete set of |x〉 states, under
an inner product defined by the complex integration. The choice of inner product and of conjugate state
are made such that orthonormality is preserved, a fact which we may confirm by again employing Cauchy’s
theorem:

〈m|m′〉 =

∮
d̄x〈m|x〉〈x|m′〉 =

∮
d̄x

xm
′

xm+1
=

1

m!
∂mx

[
xm

′
]
x=0

θ(m > 0) = δmm′ . (29)

Finally, the dynamics in Eqn. 13 can be written in state space as

|ṗ〉 = −L̂|p〉 = −(â+ − 1)[(αâ+ + 1)â− − αM ]|p〉, (30)

where we have defined the operators â+ and â− whose projections in x space are 〈x|â+ = x and 〈x|â− = ∂x.
These are analogous to the raising and lowering operators in the well known treatment of the quantum
harmonic oscillator. This operator formalism for the generating function was first developed in the 1970s;
for a review see [9].

2.2.3 Eigenvectors

The state space notation facilitates a derivation of the functional form of the eigenvectors:

φjm = 〈m|j〉 =

∮
d̄x〈m|x〉〈x|j〉 =

∮
d̄x

1

xm+1

(x− 1)j(αx+ 1)M−j

(α+ 1)M
. (31)

Here we have inserted the eigenfunctions

φj(x) = 〈x|j〉 =
(x− 1)j(αx+ 1)M−j

(α+ 1)M
(32)

from Eqn. 14, with eigenvalues given by Eqn. 22. We use Cauchy’s theorem to perform the integration and
recognize that derivatives of a product follow a binomial expansion:

φjm =
1

(α+ 1)M
1

m!
∂mx
[
(αx+ 1)M−j(x− 1)j

]
x=0

(33)

=
1

(α+ 1)M
1

m!

m∑
`=0

(
m

`

)
∂`x
[
(αx+ 1)M−j

]
x=0

∂m−`x

[
(x− 1)j

]
x=0

(34)

=
1

(α+ 1)M
1

m!

m∑
`=0

m!

(m− `)!`!

[
(M − j)!α`

(M − j − `)!θ(` ≤M − j)
] [

j!(−1)j−m+`

(j −m+ `)!
θ(m− ` ≤ j)

]
(35)

=
(−1)j−m

(α+ 1)M

∑
`∈Ω

(
M − j
`

)(
j

m− `

)
(−α)`. (36)

Here the domain Ω results from the derivatives and is defined by max(0,m− j) ≤ ` ≤ min(m,M − j). Eqn.
36 gives the expression for the eigenvectors. For j = 0 the expression reduces to the binomial distribution
in terms of the occupancy q = α/(α+ 1), as it must, since this is the steady state of the uncoupled process:

φ0
m =

(
M

m

)
αm

(α+ 1)M
=

(
M

m

)
qm(1− q)M−m. (37)

This function has one maximum, and in general the jth eigenvector has j+1 extrema, making the eigenvectors
qualitatively similar to Fourier modes or eigenfunctions of the quantum harmonic oscillator.

The switch operator L̂ is not Hermitian. A consequence is that its conjugate eigenvectors ψjm = 〈j|m〉
(row vectors) are not complex conjugates of its eigenvectors φjm = 〈m|j〉 (column vectors). Rather, they
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are distinct functions that must be constructed to obey an orthonormality relation in order to constitute a
complete basis. The orthonormality relation can be used to derive their form in x space, ψj(x) = 〈j|x〉:

δjj′ = 〈j|j′〉 =

∮
d̄x〈j|x〉〈x|j′〉 =

∮
d̄x ψj(x)

(x− 1)j
′
(αx+ 1)M−j

′

(α+ 1)M
=

∮
d̄z0 z

j′

0 fj(z0). (38)

Here we have defined z0 ≡ (x− 1)/(αx+ 1) and fj(z0) ≡ ψj(x)(αx+ 1)M+2/(α+ 1)M+1 in order to draw an

equivalence between Eqn. 38 and Eqn. 29, which then implies fj(z0) = 1/zj+1
0 = (αx+ 1)j+1/(x− 1)j+1, or

ψj(x) =
(α+ 1)M+1

(αx+ 1)M−j+1(x− 1)j+1
. (39)

Eqn. 39 gives the form of the conjugate eigenfunctions in x space, which can be used to derive the expression
for the conjugate eigenvectors as in Eqns. 31-36:

ψjm = 〈j|m〉 =

∮
d̄x〈j|x〉〈x|m〉 =

∮
d̄x

(α+ 1)M+1

(αx+ 1)M−j+1(x− 1)j+1
xm (40)

=
∑
`∈Ω

(
M − j + `

`

)(
m

j − `

)
(−α)`(α+ 1)j−`. (41)

Here Ω is defined by max(0, j −m) ≤ ` ≤ j. Eqn. 41 gives the expression for the conjugate eigenvectors.
They are jth order polynomials in m.

2.3 Expanding the coupled problem in uncoupled eigenfunctions

We now solve the CME by expanding the solution in the eigenfunctions of the uncoupled operator. This
procedure is most easily done in state space, in which the CME reads

|ṗ〉 = −[L̂x(α) + γL̂xy]|p〉 (42)

where

L̂x(α) = (â+
x − 1)[(αâ+

x + 1)â−x − αM ], (43)

L̂xy = (â+
y − 1)[(β̂xâ

+
y + 1)â−y − β̂xN ], (44)

as in Eqn. 30, and we have introduced the operator β̂x whose action on the state |m〉 yields the coupling

function, β̂x|m〉 = βm|m〉. The first step is to write the full operator as two uncoupled operators plus
a correction term. Introducing the constant β̄ to parameterize the second uncoupled operator, the CME
becomes

|ṗ〉 = −[L̂x(α) + γL̂y(β̄) + γΓ̂x∆̂y]|p〉 (45)

where we have explicitly denoted the fact that the correction term L̂xy−L̂y(β̄) factorizes into two operators
that act on each of the x and y sectors alone:

Γ̂x ≡ β̂x − β̄, (46)

∆̂y ≡ (â+
y − 1)(â+

y â
−
y −N). (47)

The second step is to expand the solution in the eigenfunctions of the two uncoupled operators. Introducing
k as the mode index for the eigenstates of L̂y(β̄), we write

|p〉 =

M∑
j=0

N∑
k=0

Gjk|j, k〉. (48)
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Inserting this form into the CME, projecting with the conjugate state 〈j′, k′|, and summing over j and k
yields the dynamics for the expansion coefficients Gjk:

Ġjk = −[(α+ 1)j + γ(β̄ + 1)k]Gjk − γ
M∑
j′=0

Γjj′
N∑
k′=0

∆kk′Gj′k′ . (49)

Here the first term is diagonal and reflects the actions of the uncoupled operators on their eigenstates. The
second term contains the corrections Γjj′ = 〈j|Γ̂x|j′〉 and ∆kk′ = 〈k|∆̂y|k′〉. The first correction is directly
evaluated by inserting a complete set of m states:

Γjj′ =

M∑
m=0

〈j|(β̂x − β̄)|m〉〈m|j′〉 =

M∑
m=0

〈j|m〉(βm − β̄)〈m|j′〉 (50)

=

M∑
m=0

ψjm(βm − β̄)φj
′

m. (51)

We see that Γjj′ is the simply the difference between the coupling function and the constant parameter,
rotated into eigenspace. Notably, for linear coupling, Γjj′ is tridiagonal (see Sec. 2.5). The second correction
is most easily evaluated by inserting a complete set of y states; the result, derived in Sec. 2.5, is

∆kk′ = kδkk′ − (N − k + 1)δk−1,k′ . (52)

We see that ∆kk′ is subdiagonal in k, which simplifies the dynamics of Gjk to

Ġjk = −
M∑
j=0

Λkjj′Gj′k + γ(N − k + 1)

M∑
j=0

Γjj′Gj′,k−1, (53)

where we define the matrix acting on the diagonal part as

Λkjj′ ≡ [(α+ 1)j + γ(β̄ + 1)k]δjj′ + γkΓjj′ . (54)

The subdiagonality allows one to write the steady state of Eqn. 53 as an iterative scheme, by which the kth
column of Gjk is computed from the (k − 1)th column:

~Gk = γ(N − k + 1)Λ−1
k Γ~Gk−1. (55)

The scheme is initialized with
~G0 = δj0 (56)

(see Sec. 2.5), and the joint distribution is recovered via

pmn =

M∑
j=0

N∑
k=0

Gjkφ
j
mφ

k
n, (57)

which is the projection of Eqn. 48 into 〈m,n| space.

Eqn. 57 constitutes an exact steady state solution to the CME, with Gjk computed iteratively via Eqns.
55 and 56, auxiliary matrices defined in Eqns. 51 and 54, and the eigenvectors given by Eqns. 36 and 41.
Importantly, the computational complexity of the solution has been dramatically reduced: rather than solving
the original CME (Eqn. 1), which requires inverting its operator of size (M + 1)(N + 1)× (M + 1)(N + 1),
Eqn. 55 makes clear that it is only necessary to invert N smaller matrices of size (M + 1)× (M + 1), i.e. the
matrices Λk for k ∈ {1, 2, . . . , N}.
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2.4 Exact expressions for moments

Now that we have an exact solution to the CME in terms of a spectral expansion, moments take an exact
form in terms of the expansion coefficients. We thus circumvent the problem of moment closure, instead
arriving at compact expressions that require only the inversion and multiplication of finite matrices via Eqn.
55.

Moments are most easily computed from the generating function, G(x, y). For example, the νth moment of
the output is

〈nν〉 = [(y∂y)
ν
G(x = 1, y)]y=1 . (58)

In terms of the expansion, the generating function is G(x, y) = 〈x, y|p〉 =
∑M
j=0

∑N
k=0Gjk〈x|j〉〈y|k〉, and

using the fact that 〈x = 1|j〉 = δj0 (Eqn. 32), we have

〈nν〉 =

N∑
k=0

G0k [(y∂y)
ν 〈y|k〉]y=1 . (59)

Inserting the expression for 〈y|k〉 (Eqn. 32) and defining w ≡ log y, we obtain

〈nν〉 =

N∑
k=0

G0k∂
ν
w

[
(ew − 1)k(β̄ew + 1)N−k

(β̄ + 1)N

]
w=0

. (60)

At this point we recall that β̄ is a constant we introduce to parameterize the expansion. The expression
for the moments therefore cannot depend on β̄: if we change β̄, the expression in brackets changes, but the
expansion coefficients G0k also change, such that Eqn. 60 evaluates to the same β̄-independent form. We
are therefore free to set β̄ to any value, and the choice β̄ = 0 makes the derivative easiest to evaluate. Thus
we have

〈nν〉 =

N∑
k=0

G0k∂
ν
w

[
(ew − 1)k

]
w=0

, (61)

where it is now understood that G0k is computed with β̄ = 0. Evaluating the derivative yields

〈nν〉 =

N∑
k=0

G0k

min(k,ν)∑
`=1

{
ν
`

}
k!

(k − `)!e
`w(ew − 1)k−`


w=0

(62)

=

N∑
k=0

G0k

min(k,ν)∑
`=1

{
ν
`

}
k!

(k − `)!δk` (63)

=

min(ν,N)∑
k=1

G0k

{
ν
k

}
k! (64)

in terms of the Stirling numbers of the second kind,{
ν
k

}
=

1

k!

k∑
`=0

(−1)k−`
(
k

`

)
`ν . (65)

For example, the first moment, second moment, and variance are

〈n〉 = G01, (66)

〈n2〉 = G01 + 2G02, (67)

σ2
n = 〈n2〉 − 〈n〉2 = G01 + 2G02 −G2

01. (68)
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These are exact expressions for the moments in terms of the expansion coefficients G0k, which are obtained
by matrix inversion and multiplication via Eqn. 55, e.g. in Mathematica.

An informative special case is immediately revealed when N = 1, for which G02 does not exist, i.e. 〈n〉 = G01

and σ2
n = G01 −G2

01, or
σ2
n = 〈n〉(1− 〈n〉) (N = 1). (69)

Here there is only one output molecule. The relationship between its mean activation and the associated
noise must therefore obey the known result for a single binary switch, Eqn. 69.

2.5 Auxiliary calculations

Here we show that Γjj′ is tridiagonal for linear βm = cm:

Γjj′ = 〈j|Γ̂x|j′〉 (70)

= 〈j|(câ+
x â
−
x − β̄)|j′〉 (71)

= −β̄δjj′ + c

∮
d̄x〈j|x〉〈x|â+

x â
−
x |j′〉 (72)

= −β̄δjj′ + c

∮
d̄x〈j|x〉x∂x〈x|j′〉 (73)

= −β̄δjj′ + c

∮
d̄x〈j|x〉x∂x

(x− 1)j
′
(αx+ 1)M−j

′

(α+ 1)M
(74)

= −β̄δjj′ + c

∮
d̄x〈j|x〉 x

(α+ 1)M

[
j′(x− 1)j

′−1(αx+ 1)M−j
′

+(x− 1)j
′
(M − j′)(αx+ 1)M−j

′−1α
]

(75)

= −β̄δjj′ + c

∮
d̄x〈j|x〉x(x− 1)j

′−1(αx+ 1)M−j
′−1

(α+ 1)M
[j′(αx+ 1) + (x− 1)(M − j′)α] (76)

= −β̄δjj′ +
c

α+ 1

∮
d̄x〈j|x〉x(x− 1)j

′−1(αx+ 1)M−j
′−1

(α+ 1)M
{
j′(αx+ 1)2

+[α(M − j′) + j′](αx+ 1)(x− 1)

+α(M − j′)(x− 1)2
}

(77)

= −β̄δjj′ +
c

α+ 1

∮
d̄x〈j|x〉

{
(x− 1)j

′−1(αx+ 1)M−j
′+1

(α+ 1)M
[j′]

+
(x− 1)j

′
(αx+ 1)M−j

′

(α+ 1)M
[α(M − j′) + j′]

+
(x− 1)j

′−1(αx+ 1)M−j
′+1

(α+ 1)M
[α(M − j′)]

}
(78)

= −β̄δjj′ +
c

α+ 1

∮
d̄x〈j|x〉 {〈x|j′ − 1〉j′ + 〈x|j′〉 [α(M − j′) + j′] + 〈x|j′ + 1〉α(M − j′)} (79)

= −β̄δjj′ +
c

α+ 1
{〈j|j′ − 1〉j′ + 〈j|j′〉 [α(M − j′) + j′] + 〈j|j′ + 1〉α(M − j′)} (80)

=
cj′

α+ 1
δj,j′−1 +

{
c[α(M − j′) + j′]

α+ 1
− β̄

}
δjj′ +

cα(M − j′)
α+ 1

δj,j′+1. (81)

Eqn. 71 recognizes that β̂x = câ+
x â
−
x is the operator representation of βm (since â+â− is the number operator,

i.e. â+
x â
−
x |m〉 = m|m〉), and Eqn. 77 uses the algebraic fact that x[j′(αx+ 1) + (x− 1)(M − j′)α](α + 1) =

j′(αx+ 1)2 + [α(M − j′) + j′](αx+ 1)(x− 1) + α(M − j′)(x− 1)2, which is straightforward to verify.
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Here we derive Eqn. 52:

∆kk′ = 〈k|∆̂y|k′〉 (82)

= 〈k|(â+
y − 1)(â+

y â
−
y −N)|k′〉 (83)

=

∮
d̄y〈k|y〉〈y|(â+

y − 1)(â+
y â
−
y −N)|k′〉 (84)

=

∮
d̄y〈k|y〉(y − 1)(y∂y −N)〈y|k′〉 (85)

=

∮
d̄y〈k|y〉(y − 1)(y∂y −N)

(y − 1)k
′
(β̄y + 1)N−k

′

(β̄ + 1)N
(86)

=

∮
d̄y〈k|y〉 (y − 1)

(β̄ + 1)N

[
yk′(y − 1)k

′−1(β̄y + 1)N−k
′
+ y(y − 1)k

′
(N − k′)(β̄y + 1)N−k

′−1β̄

−N(y − 1)k
′
(β̄y + 1)N−k

′
]

(87)

=

∮
d̄y〈k|y〉 (y − 1)k

′
(β̄y + 1)N−k

′−1

(β̄ + 1)N
[
yk′(β̄y + 1) + y(y − 1)(N − k′)β̄

−N(y − 1)(β̄y + 1)
]

(88)

=

∮
d̄y〈k|y〉 (y − 1)k

′
(β̄y + 1)N−k

′−1

(β̄ + 1)N
[
k′(β̄y + 1)− (y − 1)(N − k′)

]
(89)

=

∮
d̄y〈k|y〉

[
k′

(y − 1)k
′
(β̄y + 1)N−k

′

(β̄ + 1)N
− (N − k′) (y − 1)k

′+1(β̄y + 1)N−(k′+1)

(β̄ + 1)N

]
(90)

=

∮
d̄y〈k|y〉 [k′〈y|k′〉 − (N − k′)〈y|k′ + 1〉] (91)

= k′〈k|k′〉 − (N − k′)〈k|k′ + 1〉 (92)

= k′δkk′ − (N − k′)δk,k′+1 (93)

= kδkk′ − (N − k + 1)δk−1,k′ . (94)

Here we derive Eqn. 56:

~G0 = Gj0 (95)

= 〈j, k = 0|p〉 (96)

=

M∑
m=0

N∑
n=0

〈j|m〉〈k = 0|n〉〈m,n|p〉 (97)

=

M∑
m=0

N∑
n=0

〈j|m〉pmn (98)

=

M∑
m=0

〈j|m〉pm (99)

=

M∑
m=0

〈j|m〉〈m|j = 0〉 (100)

= 〈j|j = 0〉 (101)

= δj0. (102)

Eqn. 98 uses Eqn. 41 to obtain 〈k = 0|n〉 = 1, and Eqn. 100 recognizes that pm is the steady state of the
uncoupled operator, pm = φ0

m = 〈m|j = 0〉.
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Figure S1: The effects of partitioning persist for Michaelis-Menten coupling. The coupling is described by

β
(i)
m = βmi/[mi + (V/π)K] = βmi/(mi + φM/π), where mi is the number of X∗ molecules in partition
i ∈ {1, . . . , π}, and φ ≡ KV/M is a constant. Here β = 20, φ = 1/2, and γ = 1.

A, B As in Fig. 2 of the main text, with M = N = 2, perfect partitioning linearizes the input-output relation
and reduces the noise, transmitting more information than the well-mixed system; further, allowing exchange
among partitions compresses the response and increases the noise compared to the perfectly partitioned
system, transmitting less information than the well-mixed system.

C, D As in Fig. 5 of the main text, an information-optimal partition size, here M/π∗ = N/π∗ ≈ 2, emerges
due to the trade-off between optimizing signaling reliability and avoiding unfavorable configurations.
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Figure S2: Reducing the number of input molecules linearizes the input-output response and increases the
noise in the output. Here π = 1, β = 20, and γ = 1.

A The output (the mean activity of N = 2 Y molecules) vs. the input (the mean activity of M X molecules)
for several values of M . As M is reduced the response becomes more linear, deviating more strongly from
the mean-field response 〈n〉/N = βq/(βq + 1). Symbols show 20 uniformly spaced values of q to highlight
the effect of saturation on the state space.

B The noise vs. the mean for the output, shown for the same values of M . As M is reduced the noise
increases for all values of the mean.
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Figure S3: The emergence of an optimal partition size is robust to parameter variations.

A, B Results from the minimal system, described by the chemical master equation, as in Fig. 5B of the main
text. The information-optimal partition number π∗ is plotted as a function of molecule number M = N
for various values of β (A) and γ (B). Linear fits provide estimates of the optimal partition size M/π∗, as
indicated in the legends. In A, γ = 1; in B, β = 20.

C, D Results from the lattice simulation, in which space is accounted for explicitly, as in Fig. 6C of the
main text. The information is plotted as a function of the partition size, directly revealing an optimum, for
various values of β (C) and γ (D). Parameters are as in Fig. 6C: M = N = 49, phop = 0.001, λ = 70, and
pD/pr = 1. In C, γ = 1; in D, β = 20.

As discussed in the main text, the optimum arises due to a tradeoff between two key effects of partitioning:
on the one hand, partitioning removes correlations in the states of Y molecules, reducing noise; on the other
hand, partitioning isolates molecules, reducing the maximal response. The first effect favors few molecules
per partition, while the second effect favors many molecules per partition.

As seen here in both the minimal system (A, B) and the simulated system (C, D), lowering β or γ increases
the optimal number of molecules per partition. This result has an intuitive explanation in terms of the above
tradeoff: lowering either β or γ slows the rate of switching from the Y to the Y ∗ state, with respect to the
timescale of X switching. As a result, Y molecules are less sensitive to individual fluctuations in the state
of X molecules. The states of the Y molecules therefore exhibit weaker correlations, which in turn weakens
the benefit that partitioning imparts in terms of the removal of these correlations. The opposing effect of
molecular isolation thus begins to dominate, pushing the optimum toward a larger number of molecules per
partition.
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Figure S4: The optimal partition size has only a weak dependence on the number of output molecules. The
information-optimal partition number π∗ is plotted as a function of the number of X molecules M and the
number of Y molecules N . The dependence of π∗ on N is weak, such that the partition size M/π∗ ≈ 3− 4
is roughly constant over the range of N values.
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Figure S5: The effects of partitioning are robust to extrinsic noise.

A Simulations are performed with extrinsic noise introduced to the input parameter α. To keep α ≥ 0, the
quantity z ≡ logα is described by the simple mean-reverting Ornstein-Uhlenbeck process dz = r(µ− z)dt+
η
√
rdtξ, where ξ is a Gaussian random variable with mean 0 and variance 1; this results in a log-normal

distribution for α. The quantity 1/r is the autocorrelation time, and the choices µ = log[ᾱ3/(ᾱ+ c)]/2 and
η =

√
2 log(1 + c/ᾱ) ensure that the mean of α is ᾱ and that the variance of α scales with the mean via

σ2
α = cᾱ.

B As the magnitude of the extrinsic noise (set by c) increases, the information I[ᾱ, n] decreases for all
partition sizes, while the presence of an information-optimal partition size persists.

Here M = N = 25, β = 20, γ = 1, phop = 0.001, the system is λ = 50 lattice spacings squared, the ratio of
diffusion to reaction propensities is pD/pr = 1, and r = 1 in units of the X∗ → X reaction rate (which sets
the timescale of switching). In A, ᾱ = c = 1 and time is scaled by 1/r. In B, when c = 0, the information
transmission is lower than that in Fig. 6C of the main text because M = N is lower.
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Figure S6: The effects of partitioning are robust to receptor dimerization. Two dimerization schemes are
simulated, which are paradigmatic for receptor tyrosine kinases, including EGF receptor [10]: A Dimerization
is receptor-mediated (left, inset), meaning two active receptors X∗ form a complex C, or B dimerization is
ligand-mediated (left, inset), meaning an active receptor X∗ and an inactive receptor X form a complex C.
The latter scheme admits a “dead-end” state at ligand saturation, when all receptors are ligand-bound and
no complexes can form, leading to a non-monotonic response curve (B, left), as observed e.g. for the Ret

receptor [11]. Both schemes are described by the reactions X
α−⇀↽−
1
X∗, C + Y

γβ−−→ C + Y ∗, and Y ∗
γ−→ Y ,

with dimer formation described by X∗ +X∗
χε−⇀↽−
χ
C in A, or X∗ +X

χε−⇀↽−
χ
C in B. Here M = N = 25, β = 20,

χ = γ = 1, the system is λ = 50 lattice spacings squared, and the ratio of diffusion to reaction propensities
is pD/pr = 1. In A, ε = 20; in B, ε = 5.

Left As in Fig. 6A of the main text, as the probability of crossing a diffusion barrier phop is decreased,
the maximal value of the mean response decreases. In A, the response also becomes more linear, but
to less of a degree than in Fig. 6A of the main text. Note that due to both finite diffusion and finite
molecule number, even the unpartitioned response (phop = 1) deviates from the mean-field response (black
solid line), which is given by 〈n〉/N = βf/(1 + βf), where f is the fraction of X molecules in the dimer

state; in A, f = εg2 with g ≡ 〈m〉/M = (
√

1 + 8εq2 − 1)/(4εq), while in B, f = εg(1 − g)/(2εg + 1) with

g ≡ 〈m〉/M = [
√

1 + 8εq(1− q)− 1]/[4ε(1− q)]. Here π = 25. Legends in middle panels apply to left panels
as well.

Middle As in Fig. 6B of the main text, as the probability of crossing a diffusion barrier phop is decreased,
the output noise decreases. Black dashed line shows the binomial noise limit σ2

n/N = (〈n〉/N)(1 − 〈n〉/N).
In B, lines connecting data points are provided to reveal that, as there are two values of q that give the same
mean 〈n〉/N (left), the noise is higher for the smaller value of q. Here π = 25.

Right As in Fig. 6C of the main text, the tradeoff between reliable signaling (reduced noise) and efficient
signaling (maintaining a high maximal response) leads to an information-optimal partition size. Here phop =
0.001. Here, the information transmission is lower than that in Fig. 6C of the main text because M = N is
lower and additionally, in B, because of the non-monotonic mean response.
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Figure S7: The effects of partitioning are robust to the shape of the input distribution. As in Fig. 5 of the
main text, which takes a uniform input distribution p(q), an information-optimal partition size M/π∗ = N/π∗

persists with an input distribution that is A unimodal or B bimodal.
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Figure S8: Computation of the mutual information converges as the input is more finely discretized. The
relative error |I − I0| /I0, where I0 is the information at Nα = 100, is plotted against the number Nα of
values of α [uniformly spaced in q = α/(α + 1)] used in the computation. Five conditions are tested, as
indicated in the legend. It is seen that the relative error falls below ∼1% in all conditions for Nα & 30.
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